Higgs Boson Searches at CDF

Craig Group for the CDF Collaboration

Fermilab

FNAL: Fermi National Accelerator Lab

The Tevatron currently provides the highest energy proton-antiproton collisions in the world: $\sqrt{s} = 1.96 \text{ TeV}$

Tevatron Performance

About 5 fb^{-1} of integrated luminosity recorded by CDF (Today's results use up to 3 fb^{-1})

The CDF Experiment

General-purpose detector:

- Luminosity measurement
- Silicon vertex detector
- Central tracking chamber
- $\begin{tabular}{ll} \bullet & Electromagnetic \\ Calorimeters: Jets, e, and γ \\ \end{tabular}$
- Hadronic Calorimeters: Jets
- Muon chambers

Standard Model Higgs

- EW symmetry breaking introduced into the SM via the Higgs mechanism
 - Allows for fermion and boson mass terms in SM
 - Predicts a massive particle : The Higgs boson
 - Not yet observed: opportunity for the Tevatron!

Indirect EW constraints:

$$m_H < 154 \text{ GeV}$$

LEP direct searches:

$$m_{H} > 114 \; {\rm GeV}$$

Higgs Searches at CDF in a Nutshell

- The Challenge: extract Higgs signal from a background 10 orders of magnitudes larger
- Triggers
 - High p_T leptons (e, μ) , MET+Jets, ...
- Lepton ID: optimized on large W/Zsamples
- b-jet tagging
 - Multiple "b-tagging" categories
 - NN flavor separator
- Background estimation
 - MC predictions: W/Z+jets, diboson, top,...
 - Data driven: mistags, QCD
- Advance analysis techniques
 - To separate signal from background
 - Neural Network (NN), Matrix Elements (ME) Boosted Decision Trees (BDT)....
 - Exhaustive checks in control regions

Higgs Searches at CDF in a Nutshell

- The Challenge: extract Higgs signal from a background 10 orders of magnitudes larger
- Triggers
 - High p_T leptons (e, μ) , MET+Jets, ...
- Lepton ID: optimized on large W/Zsamples
- b-jet tagging
 - Multiple "b-tagging" categories
 - NN flavor separator
- Background estimation
 - MC predictions: W/Z+jets, diboson, top,...
 - Data driven: mistags, QCD
- Advance analysis techniques
 - To separate signal from background
 - Neural Network (NN), Matrix Elements (ME), Boosted Decision Trees (BDT),...
 - Exhaustive checks in control regions

SM Higgs: Tevatron Production and Decay

- Low mass ($m_H < \sim 135 \text{GeV}$):
 - H → bb̄ dominant decay
 - $gg o H o b\bar{b}$ overwhelmed by background
 - Search for associated W/Z production

- High mass ($m_H > \sim 135 \text{GeV}$):
 - H → WW dominant decay
 - Background low enough to use gg → H

Ultimately, multiple channels are combined within CDF and with DØ.

Low Mass: $WH \rightarrow \ell \nu b \bar{b}$

- Most sensitive channel at low mass
- Extended lepton coverage
- Two analyses:
 - NN: exploits kinematic variables
 - BDT+ME: exploits kinematic variables + ME info + NN favor separator
- Combination of above using evolved NN (∼ 10% improvement)

Results

Analysis	Lumi.	Exp.	Obs.
	(fb^{-1})	Limit	Limit
CDF NN	2.7	5.8	5.2
CDF ME+BDT	2.7	5.2	6.2
CDF combo	2.7	4.8	5.6

 $m_{H}=$ 115 GeV: 95%CL Limit in σ/SM

Low Mass: $ZH \rightarrow \ell^+\ell^-b\bar{b}$

- Cleanest signature but low signal rate
- Main background: Z+jets
- 2D NN: improved dijet mass resolution with MET projection technique
- New ME analysis

Results

Analysis	Lumi.	Exp.	Obs.
Allalysis	(fb^{-1})	Limit	Limit
CDF NN	2.7	9.9	7.1
CDF ME (120 GeV)	2.0	15.0	14.2

 $m_H = 115 \text{ GeV: } 95\%\text{CL Limit in } \sigma/\text{SM}$

Low Mass: $VH \rightarrow MET b\bar{b}$

- Also sensitive to WH where \(\ell\) is undetected
- Challenge: building a model (data driven) for QCD background
- NN analysis
 - QCD-NN with missing-pT to reject background
 - Uses of H1 Jet Algorithm combining tracking and calorimeter information
 - Add 3rd jet to include $W \to \tau \nu$ acceptance

Results

Analysis	Lumi.	Exp.	Obs.
	(fb^{-1})	Limit	Limit
CDF NN	2.1	5.6	6.9
m — 115	GeV: 95%C	1 Limit in	- /CM

High Mass: $H \rightarrow W^+W^-$

- Most sensitive Higgs search at the Tevatron
- Leptons in same directions due to spin correlation
- ME+NN analysis, analyze separately final states with 0, 1 and ≥2 jets
- Also contributes at lower mass
- Approaching SM sensitivity at 160-170 GeV!

Results

Analysis	Lumi.	Exp.	Obs.
	(fb ⁻¹)	Limit	Limit
CDF ME+NN	3.0	1.6	1.7

 $m_H = 165 \,\text{GeV}$: 95%CL Limit in σ/SM

SM Higgs Combined Limits

- Systematics and their correlation between channels and experiments taken into account
- Difficult combination with over 70 nuisance parameters
- CDF combined expected (observed) limits:
 - 115 GeV: 3.2 (3.8) × SM
 - 165 GeV: 1.6 (1.6) × SM

Combination with DØ provides about $\sqrt{2}$ in improved sensitivity

BSM Example: Fermiophobic Higgs

 $H \rightarrow \gamma \gamma$ enhanced in fermiophobic model

- Photon energy resolution much better than jets
- Look for peak in di-photon mass
- Limit mass of Fermiophobic Higgs above 106 GeV.

Potential to add sensitivity for low mass SM combination...

Conclusions

- Exciting era for Higgs boson searches at the Tevatron
- CDF is thoroughly searching for SM and BSM Higgs bosons (Many other searches that were not covered here)
- Reaching sensitivity to SM Higgs over full mass range
- No evidence for signal found yet...
- Sensitivity \sim 3.2 times SM at low mass
- Tevatron performing great, so luminosity quickly increasing!
 (> 2 fb⁻¹ / year)
- Tevatron will exclude over the full mass range with 8-10 fb⁻¹
- Stay tuned!

Exclusion has begun! $\sigma = 0.05$ excess is likely with 10 fb^{-1}

Conclusions

- Exciting era for Higgs boson searches at the Tevatron
- CDF is thoroughly searching for SM and BSM Higgs bosons (Many other searches that were not covered here)
- Reaching sensitivity to SM Higgs over full mass range
- No evidence for signal found yet...
- Sensitivity ~ 3.2 times SM at low mass
- Tevatron performing great, so luminosity quickly increasing! (> 2 fb⁻¹ / year)
- Tevatron will exclude over the full mass range with 8-10 fb⁻¹
- Stay tuned!

Exclusion has begun!

2 σ excess is likely with 10 fb^{-1}

Conclusions

- Exciting era for Higgs boson searches at the Tevatron
- CDF is thoroughly searching for SM and BSM Higgs bosons (Many other searches that were not covered here)
- Reaching sensitivity to SM Higgs over full mass range
- No evidence for signal found yet...
- ullet Sensitivity \sim 3.2 times SM at low mass
- Tevatron performing great, so luminosity quickly increasing!
 2 fb⁻¹ / year)
- Tevatron will exclude over the full mass range with 8-10 fb⁻¹
- Stay tuned!

Exclusion has begun! 2σ excess is likely with 10 fb^{-1} !

Thank you!

Lake Louise Winter Institute 2009

Backup

BACKUP

Beyond the Standard Model Higgs

 Many Beyond the Standard Model Higgs possibilities

- MSSM Higgs with enhanced couplings to b quarks and tau leptons at large tan β
 - 5 Higgs bosons: h, H, A, H⁺, H⁻
 - A degenerates with other neutral Higgs at large $\tan \beta$ (ϕ = A, h, H)
 - Limits $\tan \beta$ vs m_A
- Fermiophobic Higgs with enhanced couplings to W bosons or photons

MSSM Higgs

- \bullet $b\phi \rightarrow bbb$
 - Require 3 b-jets, Search for peak in di-b-jet mass distribution of leading jets
 - Challenge: understanding quark content of the 3 jets
 - CDF: Vertex mass fi ts
- $\phi \phi \to \tau^+ \tau^-$
 - 1 leptonic tau + 1 leptonic or hadronic tau
 - Pure enough to search for direct production
 - Challenge: understanding tau ID efficiency
 - Large W and Z samples for calibrating and testing